
°

NASA-CR-204007

///_' /

Persistent Stores and Hybrid systems*

' C, i

R. L. Grossman, t D. Valsamis, and X. Qin

Laboratory for Advanced Computing (m/c 249)

University of Illinois at Chicago

851 South Morgan Street

Chicago, IL 60607

Abstract

We describe a proof of concept implementation of

software tools for the simulation, analysis, and real-

time control of flows of hybrid systems. Using these

tools, one can create persistent object stores contain-

ing trajectories of hybrid systems and control such

systems with an appropriate query on the store. To
illustrate these ideas, we describe how to use object

stores to solve path planning problems for hybrid sys-

tems.

1. Introduction

This paper describes a proof of concept implemen-
tation of software tools for the simulation, analysis,

and real-time control of flows of hybrid systems. Us-

ing these tools, one can create persistent object stores

containing trajectories of hybrid systems and control

such systems with an appropriate query on the store.
To illustrate these ideas, we describe how to use ob-

ject stores to solve path planning problems for hybrid

systems.
By a hybrid system, we mean a collection of nonlin-

ear control systems, each corresponding to a mode of

the hybrid system, with mode switching determined
by a finite state automaton, reacting to discrete in-

put events. By a persistent object store [2], we mean

a collection of complex objects which are persistent.

Objects are called persistent if they can be accessed
and queried independently of the processes which cre-
ate them.

For the simplest applications, the persistent object
store is populated with trajectory segments from each

of the nonlinear systems corresponding to the differ-

ent modes of the hybrid system. Flows of the hybrid

system can be computed a "system at a time" by

querying the object store as follows:

*Thisresearchwas supportedin partby NASA grant
NAG2-513 and DOE grant DE-FGO2-92ER25133.

!Please send correspondence to Robert Grossman,
grossman@math.ulc.edu

1. The query retrieves the desired trajectory
segment belonging to the nonlinear system

corresponding to the initial mode.

2. An input event is accepted and a new
mode computed by stepping the automaton

or executing the appropriate software.

3. The query proceeds by selecting the de-

sired trajectory segment belonging to the
nonlinear system corresponding to the new

mode. Following this, a new input event is

accepted and the cycle repeats.

For other applications, it is appropriate to populate

the store with hybrid trajectory segments themselves.

Longer hybrid trajectory segments, corresponding to

longer input event sequences, can then be obtained
by the appropriate query on the store.

With the appropriate design of the store, a trajec-

tory segment which is expensive to compute can be
retrieved at the same cost as a trajectory segment

which is inexpensive to compute. For this reason,

viewing control algorithms as appropriate queries on
object stores of trajectory segments is competitive for

problems in which it is expensive to compute the ap-

propriate trajectory, such as path planning problems,
and for problems in which nearby trajectory segments

are also desired, such as in some approaches to deal-

ing with model uncertainty.

Our viewpoint for developing software tools for hy-

brid systems is closely related to the viewpoint of

Back, Guckenheimer and Nerode who have extended
dstool in order to analyze the phase portraits of hy-

brid systems [10]. Our viewpoint for modeling hybrid

systems is closely related to the viewpoint of Meyer

[12] and of Kohn and Nerode [11]. In this latter work
continous control systems are also coupled to discrete

automata, but the automata are used to extract con-

trol laws for the continous systems rather than to
switch modes between them.



2. Path planning

In this section, we illustrate this approach by de-

scribing how path planning algorithms can be viewed
as queries on an object store of trajectory segments,
following [7]. There are three distinct phases:

1. In a precomputation, the object store

is populated with short duration trajectory

segments, each representing a reference tra-
jectory to be followed using a regulator.

2. In a precomputation, each trajectory seg-
ment is assigned a sequence of indices.

3. The input to each query is the de-

sired flight path and a tolerance. The out-
put of a successful query is a sequence of

trajectory segments with the property that

they approximate the desired flight path to
within the tolerance. The controls necessary

to generate each trajectory segment are at-

tached to the trajectory segment and can be
used as the basis for a robust control algo-
rithm to follow the retrieved reference tra-

jectory.

The retrieved trajectory segments are computed as
follows:

Break up. The query path is broken up into

a number of smaller query path segments
which are placed on a stack and the index

of the query path segment is computed.

Retrieve. For each query path segment on

the stack, the query path is removed from

the stack and all trajectory segments in the
store with the same index are retrieved and

compared to the query path segment. If one

of them matches the query path segment to
within the desired tolerance, the trajectory

segment is returned with the query. If not,
the query path segment is broken up again

and the algorithm continues recursively.

Each trajectory segment and query path segment has

a sequence of indices attached to it. If a query path

segment has been broken up n times by the algorithm,
the nth index is used. It may happen that the algo-

rithm does not terminate successfully. In this case,

it returns the best approximating sequence of trajec-

tory segments in the store. The threshold can then be
adjusted or additional trajectory segments added to

the store to provide better approximating sequences

of trajectory segments.

This basic algorithm is easy to adapt to hybrid sys-

tems: one simply adds a mode attribute to each tra-

jectory segment, steps an automaton with each tra-
jectory segment retrieved, and only retrieve trajec-
tory segments of the next required mode by using a
suitable index function.

Path planning algorithms for control systems gen-

erally work by concatenating trajectory segments of

a fixed, specialized type. Restricting the types of tra-

jectories used to a small enough class provides enough
structure so that controls can be computed to approx-

imate the path. It is usually quite expensive to com-

pute these controls. For example, a path planning

algorithm by Murray and Sastry [13] employs trajec-
tories which are sinusoids at integrally related fre-

quencies. On the other hand, using the software tool
described here, it is easy to make use of large num-

bers of precomputed trajectory segments of a gen-
eral type. Computing the path requires only a low
cost selection of the most appropriate trajectory seg-

ments. With the proper index function, any trajec-

tory segment can be retrieved with constant cost, in-

dependent of the number of trajectory segments. By

using very general classes of trajectory segments, it
becomes easier to match the desired path. In essence,

space is traded for time and precomputation is traded
for computation: large amounts of space are required

to store all the precomputed trajectory segments and

large amounts of time are required to populate the
store and compute the required indices, but the cost

to approximate the path is low.

3. Persistent Stores

An object manager creates, stores, and accesses

persistent stores of complex objects [2], such as the

TrajectorySegment object described in Figure 1. For

example, a TrajectorySegment is a complex object

consisting of several subobjects, including a list of
points along the trajectory, a list of parameter and

control values describing the control system which

produced the trajectory segment, an integer defin-

ing the mode of the trajectory segment, and a list of
indices used to retrieve the trajectory segment.

From one viewpoint, an object manager is the anal-

ogy of a file manager, while a persistent store is the

analogy of a file system. There are several reasons
to use an object manager to manage scientific data

rather than a file manager:

-- Scientific data often has a complex struc-
ture which easily fits into an object data

model, while it must be "flattened" to fit
into a file.



-- By attachingmethodsto theobjects,it
is easy to provide application specific index-

ing and access methods in order to provide

higher performance access to the data.

-- Algorithms to manage and analyze sci-
entific data are often complex. There is

usually a "low-impedance" between the pro-
gramming language used to implement the

algorithms and the language used to create,

store, and access the objects.

Our initial prototype of the system described be-

low was implemented using a commercial relational

database: we now use an internally developed soft-

ware tool providing persistence, called ptool, for

these, and related, reasons.

Finally, we mention several requirements for an ob-

ject manager to be useful in these types of applica-
tions:

-- The object manager must provide low

overhead and high performance access to ob-
jects. This is in contrast to object managers

for other types of applications which must

provide "safe" access to objects, for exam-

ple by using a transaction model.

-- The object manager must scale as the

number of objects grows, as their size grows,

and as the complexity of the query grows.
Again, object managers for non-scientific

applications usually do not require the abil-

ity to work with large numbers of objects,
nor are their queries usually as numerically
intensive.

The object manager we designed and implemented

satisfies these reqirements.

4. Hybrid Systems

In the sections above, we have explained how to cre-

ate and access persistent object stores of trajectory

segments, or flows, from hybrid systems. In this sec-
tion, we explain a little of the theoretical background

for analyzing flows of hybrid systems.
We explain how to describe hybrid systems from

the state space and observation space viewpoints, fol-

lowing [6] and [5].
Let k denote a field of characteristic 0, say the real

numbers. To define a hybrid system in the state space

representation, we need to specify

1. A collection of control systems. Consider

a collection of control systems evolving on
the common state space X of the form

x(t) = ul(t)E_')(z(t)) ÷ u2(t)E_')(x(t)),

class TrajectorySegment {

int dimension;

int length_of_segment;

int number_of_controls;

int number_of_parameters;
int number_of_indices;

int mode;

int* index;

float* parameters;

float* controls;

float* points;

};

Figure 1: A TrajectorySegment object consists of se-

quence of points, a sequence of controls and parame-

ters, a mode, and some additional information.

z(O)=y(;)6X, i=l,...,n,

where El i) and E_ i) denote vector fields de-

scribing the dynamics of control system i

and t _ uy(t) are the controls.

2. A finite state automaton. Consider an

automaton on the states sl, ..., sin. The

automaton accepts input symbols a from a

finite set of input symbols f_, each corre-

sponding to a discrete event, and changes
its state fromsi to s i = sl.a. Let _* de-

note the semigroup of words generated by

the input symbols a 6 _.

3. A mode interpretation. We assume that

each state sj of the automaton is associated
with one of the control systems.

Flows of the hybrid system in this representation are

simply formal concatenations of flows from the vari-
ous control systems and the automaton.

We turn now to the observation space representa-
tion, which turns out to be convenient for studying

various properties of flows [5]. The basic idea is to

take as fundamental the space of observations of the

system rather than the space of states. The action
of the dynamics on the state space translates into

an action of the dynamics on the observation space.

Broadly speaking, the observation space representa-
tion is dual to the state space representation. This

viewpoint has been used to describe discrete time sys-

tems by Sontag [14] and continuous time systems by

Bartosiewicz [1]. This is also closely connected to the
emphasis on observations rather than states central

to quantum mechanics.



Given the data above, we define the observation
space representation to be the pair consisting of the

algebra of observation functions

n = {f: x --. k},

and an algebra coding the dynamics

H = k<_,_2> II kf_"

together with an action of H on R. Here II denotes

the free product of the algebras, kf_* is-the semigroup

algebra, and k<_l, _z> is the free associative algebra.
For concreteness, let the state space X be R N, let the

observation space be the ring of polynomials k[X1,
• .., XN] and assume that the dynamics are defined by

vector fields with polynomial coefficients. To define
the action of H on R, consider a typical element of
H

Reading from right to left, the input symbol c_2 causes
the automaton to change its state; associated with

the new state is a control system, say number 3; we

interpret _1 + 2_2 as the differential operator E_ a) +

2E_ 3), which acts upon a polynomial f(X1, ..., XN)
as usual to give a new polynomial g; the next input

symbol c_3 causes the automaton to change its state

again, say the control system associated with this new

state is number 1; the corresponding action on g is

then E_ 1).

For the formal definition of the action, see [6]. In
the applications described in the sections above, we

are interested in elements of k<_1,_2> of the form

exp(ul (t)_l + u_(t)_2)

corresponding to flows of the appropriate control sys-

tem. These elements have nice algebraic properties

(they are group-like [5]), which can be used to study

their properties.

5. Implementation and Experiments

To test these ideas, we developed a persistent ob-

ject manager called ptool [8], [4] and [9] which we used

to populate a persistent object store of trajectory seg-
ments. Ptool was designed to provide low overhead,

high performance access to large numbers of objects

in a distributed high performance computing environ-
ment and satisfies the requirements described in the

section on persistent stores above.

We also developed companion tools to populate

stores of trajectory segments and retrieve trajectoy
segments which approximate a given path.

select. 0.5% 1% 3%

system user cpu user cpu user cpu
car 13.75 9.25 25.25 4.75 79 66

robot 2.25 2.75 4.5 3.75 7 10

Table 1: This table describes experiments on two dif-
ferent trajectory stores. Both systems are taken from

[13]. The first system is a four dimensional model of
a kinematic car. The store consists of 396,000 trajec-

tory segments and is 115.6 MBytes in size. The sec-
ond system is a three dimensional model of a hopping

robot. The store consists of 121,500 trajectory seg-
ments and is 31.1 MBytes in size. The table contains

the time in ticks to retrieve the indicated percentages

of the trajectory segments for secondary testing. A

tick is 1/60 seconds. The times for queries retrieving

0.5_ and 1.0% of the trajectory segments are aver-

ages of four different queries each.

For the experiments here, we used a Sun Sparc-

station 1. Experiments were done on model systems

in dimensions three through six taken from [13] and

[12]. The stores ranged in size from approximately
10 MBytes to 200 MBytes and contained between

100,000 and 1,000,000 trajectory segments. The tra-

jectory segments were obtained by using a 5th or-

der Runge-Kutta algorithm. The path planning al-

gorithm used three levels of indices.

Table 1 summarizes some of the experiments per-
formed. With the indices we used, we expected to be

able to retrieve any given trajectory in constant time,

say k, and to retrieve any given set ofn trajectories in
time kn. To test this, we create several stores and re-

trieved sets of trajectories containing 0.5%, 1%, 3%,

6%, 12%, 25%, 50%, and 100% of the trajectories.
For example, for the kinematic car, ptool retrieved

0.5% of the 396,000 stored persistent trajectory seg-

ments in 23 ticks, where a tick is 1/60 seconds. This

seems to provide sufficient performance for real time

control of hybrid systems, a topic we are currently

exploring, and scales as expected.
We choose to experiment with these relatively small

stores because of system limitations: from other ex-

periments, we expect the numbers to scale linearly for

stores that are up to one or two magnitudes larger.

6. Conclusions

The work described here demonstrates the feasibil-

ity of using persistent stores of trajectory segments to

simulate, analyze, and control hybrid systems. Cur-

rent work is focusing on implementing more complex
examples, using data centered parallelism to obtain


